Monash researchers believe lithium-sulphur (Li-S) could power EVs up to 1000km per charge

Battery chemistry is a hot area in R&D right now as finding the right combination to achieve greater energy density in the same sized envelope has massive potential to...

Battery chemistry is a hot area in R&D right now as finding the right combination to achieve greater energy density in the same sized envelope has massive potential to change industries. One battery hungry industry is electric vehicles and while lithium-ion is doing a pretty good job, there’s always a thirst to improve.

Monash University researchers are on the brink of commercialising the world’s most efficient lithium-sulphur (Li-S) battery, which could outperform current market leaders by more than four times, and power Australia and other global markets well into the future.

The expectations are that Li-S could power your smart phone for as much as 5 days, or allow an electric vehicle to drive more than 1000km on a single charge.

Dr Mahdokht Shaibani from Monash University’s Department of Mechanical and Aerospace Engineering led an international research team that developed an ultra-high capacity Li-S battery that has better performance and less environmental impact than current lithium-ion products.

The researchers have an approved filed patent (PCT/AU 2019/051239) for their manufacturing process, and prototype cells have been successfully fabricated by German R&D partners Fraunhofer Institute for Material and Beam Technology.

Some of the world’s largest manufacturers of lithium batteries in China and Europe have expressed interest in upscaling production, with further testing to take place in Australia in early 2020.

The study was published in Science Advances on Saturday, 4 January 2020 – the first research on Li-S batteries to feature in this prestigious international publication.

Professor Mainak Majumder said this development was a breakthrough for Australian industry and could transform the way phones, cars, computers and solar grids are manufactured in the future.  

“Successful fabrication and implementation of Li-S batteries in cars and grids will capture a more significant part of the estimated $213 billion value chain of Australian lithium, and will revolutionise the Australian vehicle market and provide all Australians with a cleaner and more reliable energy market.

Our research team has received more than $2.5 million in funding from government and international industry partners to trial this battery technology in cars and grids from this year, which we’re most excited about.”

Professor Mainak Majumder

Using the same materials in standard lithium-ion batteries, researchers reconfigured the design of sulphur cathodes so they could accommodate higher stress loads without a drop in overall capacity or performance.

Inspired by unique bridging architecture first recorded in processing detergent powders in the 1970s, the team engineered a method that created bonds between particles to accommodate stress and deliver a level of stability not seen in any battery to date.

Attractive performance, along with lower manufacturing costs, abundant supply of material, ease of processing and reduced environmental footprint make this new battery design attractive for future real-world applications, according to Associate Professor Matthew Hill.

“This approach not only favours high-performance metrics and long cycle life, but is also simple and extremely low-cost to manufacture, using water-based processes, and can lead to significant reductions in environmentally hazardous waste.”

Associate Professor Matthew Hill.

You can download a full copy of the research at https://advances.sciencemag.org/

Categories
GeneralTechnology

Creator of techAU, Jason has spent the dozen+ years covering technology in Australia and around the world. Bringing a background in multimedia and passion for technology to the job, Cartwright delivers detailed product reviews, event coverage and industry news on a daily basis.
No Comment

Leave a Reply

Related Posts